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COMMENT 
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Abstract. We formulate the k ing  model with competing first-, second- and third-neighbour 
interactions along the branches of a Cayley tree, in the infinite coordination limit, as a 
three-dimensional non-linear mapping problem. The phase diagrams display a Lifshitz 
point and many modulated phases. The introduction of third-neighbour interactions affects 
mainly the low-temperature region of the phase diagrams. 

The axial next-nearest-neighbour Ising ( A N N N I )  model, which consists of an Ising 
model with competing interactions between first and second neighbours along an axial 
direction, has been introduced to account for the existence of modulated structures in 
several physical systems. For instance, it has been used to study magnetic compounds 
such as CeSb (Rossat-Mignod er a1 1980), ferroelectrics such as NaN02 (Yamada er 
a1 1963, Selke and Duxbury 1984) and polytypes (Price and Yeomans 1984). 

The layer-by-layer mean-field solutions of the A N N N I  model (Bak and van Boehm 
1980, Yokoi er a1 1981) are particularly hard to analyse in the modulated region of 
the phase diagram. However, if we consider an analogue of this model, with competing 
interactions between first and second neighbours along the branches of a Cayley tree 
(Vannimenus 1981), it is possible to write the solution of the statistical problem in 
terms of a set of three first-order recursion relations. Yokoi et a1 (1985) realised that 
these recursion relations are considerably simplified in the infinite coordination limit 
(that is, for J , ,  J 2 + 0  and z + a ,  with zJ ,  and z2Jz  fixed, where J ,  and J2 are the 
exchange interactions between first and second neighbours, respectively, and z is the 
coordination of the tree). It should be mentioned that the infinite coordination limit 
of the Cayley tree reproduces the mean-field results for the nearest-neighbour Ising 
model on a Bravais lattice of the same coordination (Thompson 1982). The simple 
second-order recursion relations of Yokoi er al (1989, which can be analysed in great 
detail, give rise to the main quantitative features of the phase diagram corresponding 
to the A N N N I  model. 

In a recent paper, Yamada and Hamaya (1983) proposed an king model with axial 
interactions between first, second and third neighbours to study the commensurate 
and incommensurate structures in ferroelectric systems of the type A2XB4. Mean-field 
and low-temperature series analyses of this model have been carried out by Selke er 
a1 (1985) and Barreto and Yeomans (1985). In the present paper, we consider an Ising 
model on a Cayley tree of coordination z, with exchange interactions between first 
( J , ) ,  second ( J J  and third ( J 3 )  neighbours along the branches of the tree. Although 
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not entirely similar, this is certainly the counterpart on a tree of the Ising model 
considered by Yamada and Hamaya. As in the case of the A N N N I  model, we take full 
advantage of the infinite coordination limit ( J ,  , J 2 ,  J3+ 0, z + 00, with zJ,  , z2J2 and 
z3J3 fixed) to obtain a simple third-order recursion relation for the effective layer 
magnetisation per spin. A similar model, with finite z, which leads to a higher-order 
system of equations, had been previously studied by Silva and Coutinho (1985). 

Using a decimation procedure to eliminate the spins on the outer shells of the 
Cayley tree (Inawashiro et a1 1983) we obtain a system of recursion relations. In the 
infinite coordination limit, this system is reduced to the set of third-order relations 

H zJI z2J2 z3J3 
X,, =-+-tanh X,,-,+-tanhX,,-,+-tanh Xn-3 

kBT kBT kB 7- kB 
where H is the external field, T the absolute temperature, k ,  Boltzmann's constant 
and X,, is an effective field induced in the nth shell of the tree. If we define the effective 
magnetisation per spin in the nth shell, m, = tanh X,,, it is possible to rewrite (1) in 
the more convenient form 

(2 )  m,, = tanh[t-'(m,-,-pm,,-,- rm,-,)+ h ]  

where t = k , T / z J , ,  p = - z 2 J 2 / z J l ,  r = - z3J3/zJ ,  and h = H/kBT Equation (2) is 
similar to the mean-field equation of state for the A N N N I  model (see, for example, 
Jensen and Bak 1983). In the present case, however, there are no interactions between 
spins on the same shell. Also, the hierarchical character of the Cayley tree breaks the 
translational invariance of the model. It should be remarked that it is straightforward 
to write a generalisation of (2) to account for the inclusion of fourth-, fifth-, etc, 
neighbour interactions along the branches of the tree. 

The paramagnetic lines of the phase diagram are obtained from the analysis of the 
stability of the paramagnetic fixed point of (2) ( m f  = 0, for all n, with H = 0). For 
r > -& we obtain a number of analytical results. In the t - p  space, there is a second-order 
paramagnetic-ferromagnetic transition for t + p  + r = 1 ,  with p < (1 - 3r)/2, and a para- 
magnetic-modulated transition for p = t - r( 1 + r)/ t ,  with p > (1 - 3r)/2. Thus, for 
r > --& the Lifshitz point is located at p = (1 -3r) /2  and t = (1 + r)/2. Along the 
paramagnetic-modulated second-order transition line, the critical wavevector is given 
by cos qc = (1 + r)/2t. For r < -f, on the other hand, we have to resort to a numerical 
analysis in order to study the stability conditions. 

The boundaries between the modulated phases shown in figure 1 ,  for r > 0, and in 
figure 2, for -f < r < 0, have been obtained from a numerical analysis of (2)  in zero 
field. For given values of t ,  p and r, the equilibrium configuration is found by repeated 
iterations of the recursion relation, with given initial values for m o ,  m ,  and m 2 .  Besides 
the trivial paramagnetic ( m *  = 0) and ferromagnetic ( m *  # 0) fixed points, the effective 
magnetisation may flow to (i)  a well defined periodic cycle ( m f + L =  m f ) ,  which 
corresponds to a commensurate modulated phase with period L; (ii) a one-dimensional 
orbit, which is associated with an incommensurate phase (or, within the precision of 
the numerical calculation, with a commensurate phase of a very large period) and (iii) 
a strange attractor with a fractal character, which is associated with a possible chaotic 
phase. In figures 1 and 2 we show the main commensurate phases only. The principal 
wavevector of a commensurate phase of period L, in units of 27r, is given by q =  
( I +  1)/2L, where I indicates the number of changes of sign of the effective magnetisation 
in the period L. In the hatched regions of figures 1 and 2, the magnetisation can flow 
either to a ferromagnetic or to a modulated fixed point, depending on the initial 
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Figure 1. Global r-p phase diagram ( r  = k , T / z J , ,  p = - z z J z / z J , )  of the Ising model on 
the Cayley tree, in the infinite coordination limit, with r=0 .1  ( r =  - z 3 J 3 / z J l ) .  We show 
the paramagnetic, ferromagnetic and modulated regions and the Lifshitz point (LP). The 
main commensurate phases are indicated by their corresponding principal wavenumbers. 
In the hatched region there is the possibility of the coexistence between ferromagnetic and 
modulated phases. 
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Figure 2. Global r - p  phase diagram with r = -0.1. At low temperatures, near p = I ,  the 
hatched region corresponds to the occurrence of either ferromagnetic or a phases, depending 
on the initial conditions of the mapping. 

conditions. These results are then interpreted as the indication of the occurrence of 
a first-order boundary between the ferromagnetic and the modulated regions (see, for 
example, de Oliveira and Salinas 1985). 

It is interesting to compare figures 1 and 2 with the phase diagram for the case 
r = 0 (see figure 1 in Yokoi er a1 (1985)). For high temperatures, these phase diagrams 
are all similar. For low temperatures, however, there are sensible differences, which 
are related to the new ground state defined by the presence of the third-neighbour 
interactions. The ground state of the cubic lattice, shown in figure 1 of Selke et al 
(1989, exhibits, for r > 0, two multiphase points, corresponding to the ferromagnetic-& 
and the :-a phase transitions. For sufficiently small r < 0, at low temperatures, the 
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ferromagnetic-: transition is first order and there is no multiphase point in the ground 
state of the cubic lattice. Similar features are present in the models defined on the 
Cayley tree. At low temperatures, for r < 0, the phase diagram of figure 2 shows a 
hatched region, which corresponds to either a ferromagnetic or a a phase, depending 
on the initial conditions. For mo= m, = mz = 1, the mapping flows to a ferromagnetic 
fixed point. However, if the sign of any initial effective spin magnetisation is changed, 
there is a flow to a a phase. This is a clear indication of the occurrence of a first-order 
phase transition. 

For r > 0, with fixed t ,  the wavevector q increases with p and gives rise to a standard 
devil’s staircase, as in the r = O  case. With increasing temperature, the width of the 
main commensurate phases begins to decrease, then increases again, and then decreases 
as in the r = 0 case. For r < 0, the behaviour of the wavevector q is quite unusual at 
low temperatures. The convergence of the iterative process is slow and, for fixed 1, q 
does not increase with p in a regular fashion. The influence of the initial conditions 
is overwhelming and we do have first-order transitions between the main commensurate 
phases. At higher temperatures, the phase diagram again exhibits its usual properties. 

The qualitative differences between our calculations on the Cayley tree and the 
mean-field results of Selke et a1 (1985) are analogous to the differences between the 
phase diagrams of the Vannimenus model in the infinite coordination limit (Yokoi et 
a1 1985) and  the usual mean-field A N N N I  model on a cubic lattice. On the Cayley 
tree, the Lifshitz point corresponds to an angular junction of the second-order para- 
ferromagnetic and paramagnetic-modulated, and  the first-order ferromagnetic-modu- 
lated, transition lines. At low temperatures, on the Cayley tree, the lines which spring 
from the multiphase point d o  not show the characteristic infinite tangent as in the 
A N N N I  model. Also, the sequence of commensurate phases at low temperatures turns 
out to be different. However, preliminary calculations for a Cayley tree with the 
inclusion of some first-neighbour ferromagnetic interactions between spins belonging 
to the same shells indicate that the infinite tangent, as well as the sequence of 
commensurate phases, may change towards the characteristic features of the A N N N I  

model. 
In conclusion, the addition of third-neighbour interactions has not changed the 

main features of the phase diagram of the Vannimenus model in the infinite coordination 
limit. The modifications at  low temperatures may be relevant to signal the extra care 
which has to be taken in the interpretation of experimentally interesting systems. 

We acknowledge helpful conversations with Sergio G Coutinho. 
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